Class, methods and functionality for processing phrases (lexical units, lexical items, multi-word expressions) beyond the token level. The envisaged workflow at this stage is to detect phrases using the ngrams-method and to generate a phrases class object from the ngrams object using the as.phrases method. This object can be passed into a call of count, see examples. Further methods and functions documented here are used internally, but may be useful.

# S4 method for ngrams
as.phrases(.Object, ...)

# S4 method for matrix
as.phrases(.Object, corpus, enc = encoding(corpus))

# S4 method for phrases
as.character(x, p_attribute)

concatenate_phrases(dt, phrases, col)

Arguments

.Object

Input object, either a ngrams or a matrix object.

...

Arguments passed into internal call of cpos method.

corpus

A length-one character vector, the corpus ID of the corpus from which regions / the data.table representing a decoded corpus is derived.

enc

Encoding of the corpus.

x

A phrases class object.

p_attribute

The positional attribute (p-attribute) to decode.

dt

A data.table.

phrases

A phrases class object.

col

If .Object is a data.table, the column to concatenate.

Details

The phrases considers a phrase as sequence as tokens that can be defined by region, i.e. a left and a right corpus position. This information is kept in a region matrix in the slot "cpos" of the phrases class. The phrases class inherits from the regions class (which inherits from the and the corpus class), without adding further slots.

If .Object is an object of class ngrams, the as.phrases-method will interpret the ngrams as CQP queries, look up the matching corpus positions and return an phrases object.

If .Object is a matrix, the as.phrases-method will initialize a phrases object. The corpus and the encoding of the corpus will be assigned to the object.

Applying the as.character-method on a phrases object will return the decoded regions, concatenated using an underscore as seperator.

The concatenate_phrases function takes a data.table (argument dt) as input and concatenates phrases in successive rows into a phrase.

See also

Other classes to manage corpora: corpus-class, regions, subcorpus

Examples

# Workflow to create document-term-matrix with phrases obs <- corpus("GERMAPARLMINI") %>% count(p_attribute = "word") phrases <- corpus("GERMAPARLMINI") %>% ngrams(n = 2L, p_attribute = "word") %>% pmi(observed = obs) %>% subset(ngram_count > 5L) %>% subset(1:100) %>% as.phrases() dtm <- corpus("GERMAPARLMINI") %>% as.speeches(s_attribute_name = "speaker", progress = TRUE) %>% count(phrases = phrases, p_attribute = "word", progress = TRUE, verbose = TRUE) %>% as.DocumentTermMatrix(col = "count", verbose = FALSE)
#> ... creating data.table with corpus positions
#> ... adding tokens
#> ... generating phrases
#> ... counting
#> ... creating bundle of count objects
grep("erneuerbaren_Energien", colnames(dtm))
#> [1] 98
grep("verpasste_Chancen", colnames(dtm))
#> [1] 12260
# Derive phrases object from an ngrams object reuters_phrases <- ngrams("REUTERS", p_attribute = "word", n = 2L) %>% pmi(observed = count("REUTERS", p_attribute = "word")) %>% subset(ngram_count >= 5L) %>% subset(1:25) %>% as.phrases() phr <- as.character(reuters_phrases, p_attribute = "word") # Derive phrases from explicitly stated CQP queries cqp_phrase_queries <- c( '"oil" "revenue";', '"Sheikh" "Aziz";', '"Abdul" "Aziz";', '"Saudi" "Arabia";', '"oil" "markets";' ) reuters_phrases <- cpos("REUTERS", cqp_phrase_queries, p_attribute = "word") %>% as.phrases(corpus = "REUTERS", enc = "latin1") # Use the concatenate_phrases() function on a data.table lexical_units_cqp <- c( '"Deutsche.*" "Bundestag.*";', '"sozial.*" "Gerechtigkeit";', '"Ausschuss" "f.r" "Arbeit" "und" "Soziales";', '"soziale.*" "Marktwirtschaft";', '"freiheitliche.*" "Grundordnung";' ) phr <- cpos("GERMAPARLMINI", query = lexical_units_cqp, cqp = TRUE) %>% as.phrases(corpus = "GERMAPARLMINI", enc = "word") dt <- corpus("GERMAPARLMINI") %>% decode(p_attribute = "word", s_attribute = character(), to = "data.table") %>% concatenate_phrases(phrases = phr, col = "word")
#> decoding p-attribute:word
#> assembling data.table
dt[word == "Deutschen_Bundestag"]
#> cpos word #> 1: 308 Deutschen_Bundestag #> 2: 508 Deutschen_Bundestag #> 3: 3034 Deutschen_Bundestag #> 4: 9408 Deutschen_Bundestag #> 5: 10449 Deutschen_Bundestag #> 6: 10580 Deutschen_Bundestag #> 7: 11434 Deutschen_Bundestag #> 8: 11963 Deutschen_Bundestag #> 9: 21347 Deutschen_Bundestag #> 10: 32024 Deutschen_Bundestag #> 11: 53952 Deutschen_Bundestag #> 12: 70369 Deutschen_Bundestag #> 13: 70846 Deutschen_Bundestag #> 14: 76952 Deutschen_Bundestag #> 15: 89287 Deutschen_Bundestag #> 16: 89318 Deutschen_Bundestag #> 17: 100758 Deutschen_Bundestag #> 18: 114793 Deutschen_Bundestag #> 19: 118872 Deutschen_Bundestag #> 20: 129975 Deutschen_Bundestag #> 21: 131688 Deutschen_Bundestag #> 22: 137340 Deutschen_Bundestag #> 23: 160334 Deutschen_Bundestag #> 24: 167455 Deutschen_Bundestag #> 25: 171908 Deutschen_Bundestag #> 26: 172517 Deutschen_Bundestag #> 27: 177983 Deutschen_Bundestag #> 28: 188692 Deutschen_Bundestag #> cpos word
dt[word == "soziale_Marktwirtschaft"]
#> cpos word #> 1: 21178 soziale_Marktwirtschaft #> 2: 42934 soziale_Marktwirtschaft #> 3: 42944 soziale_Marktwirtschaft #> 4: 42960 soziale_Marktwirtschaft #> 5: 42981 soziale_Marktwirtschaft #> 6: 64328 soziale_Marktwirtschaft